FSR methods for second-order regression models
نویسندگان
چکیده
منابع مشابه
FSR methods for second-order regression models
Most variable selection techniques focus on first-order linear regression models. Often, interaction and quadratic terms are also of interest, but the number of candidate predictors grows very fast with the number of original predictors, making variable selection more difficult. Forward selection algorithms are thus developed that enforce natural hierarchies in second-order models to control th...
متن کاملSecond order optimality for estimators in time series regression models
We consider the second order asymptotic properties of an efficient frequency domain regression coefficient estimator β̂ proposed by Hannan [4]. This estimator is a semiparametric estimator based on nonparametric spectral estimators. We derive the second order Edgeworth expansion of the distribution of β̂. Then it is shown that the second order asymptotic properties are independent of the bandwidt...
متن کاملHighly Efficient Hierarchical Online Nonlinear Regression Using Second Order Methods
We introduce highly efficient online nonlinear regression algorithms that are suitable for real life applications. We process the data in a truly online manner such that no storage is needed, i.e., the data is discarded after being used. For nonlinear modeling we use a hierarchical piecewise linear approach based on the notion of decision trees where the space of the regressor vectors is adapti...
متن کاملNumerical Methods for Second-order Stochastic Equations
We seek numerical methods for second-order stochastic differential equations that accurately reproduce the stationary distribution for all values of damping. A complete analysis is possible for linear second-order equations (damped harmonic oscillators with noise), where the statistics are Gaussian and can be calculated exactly in the continuous-time and discrete-time cases. A matrix equation i...
متن کاملSecond-Order Regression-Based MR Image Upsampling
The spatial resolution of magnetic resonance imaging (MRI) is often limited due to several reasons, including a short data acquisition time. Several advanced interpolation-based image upsampling algorithms have been developed to increase the resolution of MR images. These methods estimate the voxel intensity in a high-resolution (HR) image by a weighted combination of voxels in the original low...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Computational Statistics & Data Analysis
سال: 2011
ISSN: 0167-9473
DOI: 10.1016/j.csda.2011.01.009